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Abstract. Using a mean-field approximation, we have developed a systematic treatment of collective elec-
tronic modes in a semiconductor superlattice (SL) in the presence of strong electric and magnetic fields
parallel to the SL axis. The spectrum of collective modes with zero wavevector along the SL axis is shown
to consist of a principle magnetoplasmon mode and an infinite set of Bernstein-like modes. For non-zero
wavevector along the SL axis, in addition to the cyclotron modes, extra collective modes are found at
the frequencies |Nωc ± Mωs|, which we call cyclotron-Stark modes (ωc and ωs are respectively the cy-
clotron and Stark frequencies, N and M are integer numbers). The frequencies of the modes propagating
in “oblique” direction with respect to the SL axis show oscillatory behavior as a function of electric field
strength. All the modes considered have very weak spatial dispersion and they are not Landau damped.
The specific predictions made for the dispersion relations of the collective excitations should be observable
in resonant Raman scattering experiments.

PACS. 73.20.Mf Collective excitations (including excitons, polarons, plasmons and other charge-density
excitations) – 73.20.Dx Electron states at surfaces and interfaces

1 Introduction

It is well known that an external electric field applied
along the growth axis of a semiconductor superlattice (SL)
localizes electronic states along the field direction into the
now-called Wannier-Stark states, whose extension is in-
versely proportional to the applied field. This results in a
suppression of tunnelling between adjacent quantum wells
and therefore corresponds to a splitting of each allowed
energy band (“miniband”) of a SL into a Wannier-Stark
ladder, a set of equally spaced subbands whose separa-
tion depends linearly on both the electric-field strength
and the period of the SL. Because of the large value of
the latter (� 10 nm) in a real SL, the Wannier-Stark lev-
els are easily resolved − even in relatively low electric
fields (� 10–20 kV/cm). Their existence has been demon-
strated by means of transport and optical experiments,
involving photocurrent and photoluminescence excitation
spectroscopy, as well as electroreflectance (for a review
see [1–4]).

The ladder-like energy spectrum of the SL is still more
specific in the presence of a magnetic field applied per-
pendicular to the layers, that is parallel to the electric
field. Due to the localizing effect of the magnetic field in
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the plane of the SL parallel to the interface, the electronic
states of this system are localized in all three dimensions,
and hence have purely discrete energies, like those occur-
ring in an atomic system or in a quantum-dot structure.
This leads to a series of interesting physical phenomena
whose investigation is becoming a very active area of re-
search [5–22].

These studies were mainly concentrated on single-
particle aspects of the problem, with little attention paid
to the consequences of many-body effects which arise due
to electron-electron interactions (the only exception we
are aware of is the paper of Barticevic et al. [23]). Among
the most interesting of these is the existence of the col-
lective excitations of an electron gas, in particular the
plasma oscillations and the dielectric screening associated
with them. While over the last two decades the collective
excitations in a SL have been extensively studied both
theoretically and experimentally by many authors (see re-
views [24–26] and the recent papers [27,28] for references),
there have been no reports on the problem of collective
excitations when an electric field and a magnetic field are
applied to the system simultaneously. Meanwhile the two
field configurations for a SL are very interesting since un-
der these conditions new branches of the collective exci-
tation spectrum can be expected to arise. In the present
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paper we focus our attention on the theoretical investiga-
tion of collective electronic modes in a SL in the presence
of electric and magnetic fields along the SL axis.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe our model and develop the constitutive
equations for the theory of the collective excitations in a
SL subject to parallel electric and magnetic fields. In Sec-
tion 3 we apply our theory to the case of low densities of
an electron gas in a SL and derive the dispersion relations
for collective excitations of the system. In this section, nu-
merically calculated dispersion curves are also presented
and discussed in detail. Finally, we give a summary of our
main conclusions in Section 4.

2 Description of the model and derivation
of the RPA dispersion equation

The model adopted in this paper to describe the SL struc-
ture is standard and has previously been used by many
investigators to study collective electronic modes of a
SL since the pioneering works of Bloss and Brody [29],
Das Sarma and Quinn [30] and Tselis and Quinn [31]. It
presents a periodic array of two-dimensional electron gas
layers separated from each other by a distance d which is
the period of the SL, and are embedded in a neutraliz-
ing background with dielectric constant κ0. The so-called
type-I superlattices (such as GaAs/AlxGa1−xAs) consist-
ing of alternating layers of two semiconductors with band-
gap discontinuity at the interface of the two materials and
with sufficiently close dielectric constants can be consid-
ered as a prototype of this model system. It is assumed
that the system is infinitely extended in the z direction
parallel to the SL axis and subject to an electric field E
and a magnetic field B along the same direction.

It is convenient to describe the magnetic field B by the
vector potential A using the relation B = ∇ × A in the
Landau gauge

Ax = Az = 0, Ay = Bx. (1)

In this case the Hamiltonian of an electron is given by

He =
p2

x

2m⊥
+

(py +m⊥ωcx)2

2m⊥
+

p2
z

2m‖
+ U(z) + eEz, (2)

where p(px, py, pz) is the momentum operator of a con-
duction electron, ωc = eB/m⊥c is the frequency of the
cyclotron rotation in the x-y plane and U(z) = U(z + d)
is the SL periodic potential which confines electrons to
the planes z = md (m is the integer labelling the mth
layer). It is assumed that the period of the SL is con-
siderably larger than the lattice constants of the host
semiconductors which compose the SL. This enables the
envelope-function approximation [32–35] to be used for
describing the electronic structure of the SL, where the
periodic potential of the host materials is taken into ac-
count through the effective electron conduction-band-edge
masses m‖ and m⊥ in the direction along and perpendic-
ular to the SL axis, respectively.

The eigenfunctions ψkλ(r) and eigenvalues ελ of He

can be cast in the form

ψkλ(r) =
1√
Ly

exp(iky)φlk(x)χn(z), (3)

ελ ≡ εln = εl + εn =
(
l +

1
2

)
�ωc + n�ωs. (4)

Note that in writing equation (4) we have chosen the zero
level of energy at the energy of the lowest (ground) mini-
band in the absence of both a DC magnetic field and a DC
electric field. In equations (3, 4) the following notations are
used: Ly is the size of the system in the y direction, k is
the y-component of the electron wavevector, λ is the com-
posite index (l, n) consisting of a Landau level quantum
number l(= 0, 1, 2, . . . ) and the Wannier-Stark level index
n(= 0,±1,±2, . . . ), ωs = eEd/� is the Wannier-Stark fre-
quency, χn(z) is the envelope function, and φlk(x) is the
normalized harmonic-oscillator wavefunction centered at
x0 = −a2

Bk, having the form

φlk(x) ≡ φl

(
x− x0

aB

)
=
(

1√
π2ll!aB

)1/2

× exp

{
−1

2

(
x− x0

aB

)2
}
Hl

(
x− x0

aB

)
· (5)

Here aB = (�/m⊥ωc)1/2 is the radius of the cyclotron
orbit in the x-y plane andHl(x) is the Hermite polynomial
of the lth order.

The envelope function χn(z) describing the quantized
electron motion along the SL axis is given by the well-
known expression [1,4]

χn(z) =
∞∑

m=−∞
Jm−n(∆/2�ωs)ϕ(z −md), (6)

where ϕ(z −md) is the quantum-well eigenstate centered
at md, Jn(∆/2�ωs) is the Bessel function of the first kind
and of integer n, and∆ is the width of the lowest miniband
of a SL. Since the width of the electron density profile in
any one quantum well is assumed to be much less than the
SL period d, the function |ϕ(z −md)|2 may be presented
as the Dirac delta function located at zm = md [29–31]

|ϕ(z −md)|2 = δ(z −md). (7)

This approximation seems to be reasonable for fairly low
electron densities which will concern us in this paper. Fol-
lowing the approach developed in references [36,37], it is
not hard to show that changing |ϕ(z−md)|2 to more com-
plicated localized functions does not change the conclu-
sions of this paper in any qualitative fashion.

It should be pointed out that Landau and Wannier-
Stark state levels cannot be resolved when their thermal
and collision broadening is grater than their energy sepa-
ration. Therefore, we assume that the following inequali-
ties are valid

�ωc(ωs) � kBT, ωc(ωs)τ � 1, (8)
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H = H0 + He−e =
∑
kλ

ελa†
λkaλk +

1

2

∑
k,k′,q⊥

∑
λ1,2,3,4

Vλ1λ2λ3λ4(k, k′,q⊥)a†
λ1k+qy

a†
λ2k′−qy

aλ3k′aλ4k, (13)

where kB is the Boltzmann constant, T is the absolute
temperature, and τ is the electron relaxation time. In ad-
dition, the restriction to the lowest miniband made above
requires the conditions

∆g � �ωs, ∆g � �ωc (9)

to be fulfilled (∆g is the width of the first minigap in the
energy band structure of a SL). Under these conditions we
can neglect the magnetic breakdown and Zener tunnelling
of electrons from the lowest miniband to higher ones. The
possibility of the experimental realization of all the above
conditions has been demonstrated in a number of works
(see, for example, Ref. [4] where extended references are
given).

Let r‖ denote a two-dimensional coordinate vector of
an electron in an arbitrary layer of our model SL structure,
that is, r‖ = exx+eyy, where ex and ey designate the unit
vectors directed along the corresponding axes. Electrons in
different layers interact only via the Coulomb interaction.
As mentioned above, the dielectric constants of the two
materials forming the SL are assumed to be very close.
Therefore, we can neglect any image potential term in
the interaction and put the three-dimensional Coulomb
potential V (r−r′) with r = (r‖, z) and r′ = (r′‖, z

′) in the
form

V (r − r′) =
e2

κ0

√
|r‖ − r′‖|2 + (z − z′)2

· (10)

Its Fourier transform with respect to r‖ − r′‖ is

V (q⊥; z − z′) = V (q⊥) exp(−q⊥|z − z′|) (11)

with

V (q⊥) =
2πe2

κ0|q⊥|LxLy
, (12)

where q⊥ is a two-dimensional wavevector in the x-y
plane, LxLy is the area of each layer of the SL system.

Using the single-particle states (3) as the basis for
second quantization, the full Hamiltonian of the system
which we are interested in can be expressed as

see equation (13) above,

where a†λk and aλk are the electron creation and annihi-
lation operators corresponding to the single-electron state
|λk〉 and Vλ1λ2λ3λ4(k, k′,q⊥) denotes the Coulomb inter-
action vertex

Vλ1λ2λ3λ4(k, k
′,q⊥) = V (q⊥)Fl1l4(k + qy, k; qx)

× Fl2l3(k
′ − qy, k

′;−qx)In1n2n3n4(q⊥), (14)

in which

Fll′ (k, k′; qx) =
∫

dxφlk(x)φl′k′(x) exp(iqxx), (15)

In1n2n3n4(q⊥) =∫
dz
∫

dz′χ∗
n1

(z)χ∗
n2

(z′)χn3(z
′)χn4(z) exp(−q⊥|z − z′|).

(16)

In the same second quantization representation the
electron density operator of the system can be written as

ρ(r) =
∑
λλ′

∑
kk′

ψ∗
λ′k′ (r)ψλk(r)a†λ′k′aλk. (17)

Its Fourier transform with respect to r‖ is given by

ρ(q⊥, z) =
∑

k

∑
λλ′

Fll′(k, k + qy, ;−qx)

× χn(z)χ∗
n′(z)a†λ′kaλk+qy . (18)

From this equation, we see that the Fourier component
of the electron density operator is no longer of the simple
form

∑
k a

†
kak+q as in the three-dimensional free-electron

gas where the single-particle states are plane-waves.
To obtain the dispersion relations for the collective

modes we consider the linear response of a SL to an ex-
ternal potential. Following Das Sarma and Quinn [30] and
Tselis and Quinn [31], we use the normal random-phase
approximation (RPA) which includes only direct Coulomb
interactions, but ignores exchange contributions as well as
all short-range correlations beyond exchange. As it is well
known, the RPA is applicable in the weak-coupling regime
where rs = r0/aB � 1 (r0 is the mean distance between
electrons and aB is the effective Bohr radius). In this pa-
per we are concerned with a SL where the areal electron
density ns per layer is relatively low (∼ 108 − 109 cm−2),
so that rs � 1. For such a situation the RPA, which gives
the exact results in the high-electron density limit, may
not be quite justified and may need to be improved on. Of
late, extensive work has been done on the study of the be-
havior of collective modes (plasmons in this case) beyond
RPA (we refer to the Refs. [38,38] on the inclusion of cor-
relation effects on the plasmon spectrum in general and
to the Refs. [40–42] in SLs in particular). However, recent
experimental and theoretical studies [43, 44] have proved
that the plasmon dispersion (up to very large wavevec-
tors) in a low-density (down to ns = 5 × 108 cm−2 cor-
responding to rs ∼ 25) two-dimensional electron system
in a GaAs quantum-well layer seems to be quantitatively
reproduced by RPA, offering much better agreement with
experiment [43] compared to its “improved” versions in-
cluding local-field corrections. We speculate that this is
also true for more complicated systems such as a SL, and
in our calculation we restrict ourselves to the usual RPA.
Of course, in view of the simplifying assumptions made
(zero thickness layers, the complete neglect of correla-
tions), all the further predictions regarding the collective
mode spectrum for finite wavevectors have to be treated
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with some caution. It should be stressed, however, that
it is not our objective at this stage to strive towards an
agreement with possible experiments.

To begin with, we consider the electron density-
fluctuation operator δρ(ω,q⊥; z) which determines the
density response of the system to an external harmonic
perturbation of frequency ω:

δρ(ω,q⊥; z) =
∑

k

∑
λλ′

Fll′(k, k + qy, ;−qx)

× χn(z)χ∗
n′(z)

(
a†λ′kaλk+qy

)
1
. (19)

Here the subscript 1 at the operator a†λ′kaλk+qy refers to
the perturbed part of the operator.

Next, following the self-consistent field prescription,
we consider the equation of motion for the operator
a†λ′kaλk+qy :

−i�
d
dt

(a†λ′kaλk+qy ) =
[
H, a†λ′kaλk+qy

]
= (ελ′ − ελ)a†λ′kaλk+qy

+
[
He−e, a

†
λ′kaλk+qy

]
. (20)

Applying the standard RPA to the last term in the
above equation yields

− i�
d
dt

〈
a†λ′kaλk+qy

〉
1

= (ελ′ − ελ)
〈
a†λ′kaλk+qy

〉
1

+
(
f

(0)
λ − f

(0)
λ′

)∑
k′qx

∑
λ1,2

Vλ′λ1λ2λ(k, k′ + qy,q⊥)

×
〈
a†λ1k′aλ2k′+qy

〉
1
. (21)

With a linear response to an external field with fre-
quency ω

−i
d
dt

〈
a†λ′kaλk+qy

〉
1

= −ω
〈
a†λ′kaλk+qy

〉
1
. (22)

Consequently, equation (21) takes the form

〈a†λ′kaλk+qy 〉1 − Pλλ′ (ω)
∑
k′qx

∑
λ1,2

Vλ′λ1λ2λ(k, k′ + qy,q⊥)

〈a†λ1k′aλ2k′+qy 〉1 = 0, (23)

where Pλλ′ (ω) is defined as

Pλλ′ (ω) ≡ Pln,l′n′(ω) =
f (0)(εln) − f (0)(εl′n′)
εln − εl′n′ + �ω

· (24)

Using equations (5) and (15), it is easy to get the re-
lation∑

k

Fll′(k, k + qy;−qx)Fl′l(k + qy, k; q′x) =

LxLy

2πa2
B

δ(qx′ , qx)|Fll′ (q⊥aB)|2, (25)

where δ(qx′ , qx) is the Kronecker delta, q2⊥ = q2x + q2y, and
|Fll′(q⊥aB)|2 can be expressed in terms of the associated
Laguerre polynomials Ll1−l2

l2
(x),

|Fll′ (q⊥aB)|2 =
l2!
l1!

(q⊥aB

2

)l1−l2
exp

(
−q⊥aB

2

)
×
[
Ll1−l2

l2

(q⊥aB

2

)]2
, (26)

with l1 = max(l, l′) and l2 = min(l, l′). Taking into ac-
count (14–16) and (19), we then get from equation (23)
that 〈δρ(ω,q⊥; z)〉 satisfies the integral equation

〈δρ(ω,q⊥; z)〉 − e2

κ0a2
Bq⊥

∑
λλ′

Pλλ′ (ω)|Fll′ (q⊥aB)|2

× χ∗
n(z)χ∗

n′(z)
∫

dz′
∫

dz′′ exp(−q⊥|z′′ − z′|)
× χ∗

n(z′′)χ∗
n′(z′′)〈δρ(ω,q⊥; z′)〉 = 0. (27)

In view of the translational symmetry of the SL in the
z direction, the following Ansatz can be used as a solution
for equation (27):

〈δρ(ω,q⊥; z)〉 = 〈δρ(ω,q⊥)〉exp(iqzz) (28)

with z being equal to the possible discrete values zm = md
allowed in the SL structure and with the “wave number”
qz continuously varying within the first Brillouin minizone
of the SL, i.e., −π/d ≤ qz ≤ π/d. The physical meaning
of qz is quite clear: this quantity determines the relative
phase of the electron-density oscillations in the adjacent
layers of the SL.

Substituting (28) into equation (27), we then find

1 − e2

κ0a2
Bq⊥

∑
λλ′

Pλλ′ (ω)|Fll′ (q⊥aB)|2

× exp(−iqzz)χ∗
n(z)χ∗

n′(z)
∫

dz′ exp(iqzz′)

×
∫

dz′′ exp(−q⊥|z′′ − z′|)χ∗
n(z′′)χ∗

n′(z′′) = 0. (29)

Next, we integrate (29) over z in the limits from 0
to Lz = Nd, where N is the number of the SL layers.
Using (6) and taking into account that wave functions of
electrons in adjacent layers do not overlap (the coupling
between the layers is realized only through a mean-field),
we get

1 − e2

κ0q⊥a2
B

S(q⊥, qz)
∑
λ,λ′

Pλλ′ |Fll′(q⊥aB)|2

×
∑
m

Jm−n

(
∆

�ωs

)
Jm−n′

(
∆

�ωs

)
eimqzd

×
∑
m′

Jm′−n

(
∆

�ωs

)
Jm′−n′

(
∆

�ωs

)
e−im′qzd = 0, (30)
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where the function S(q⊥, qz) is defined as

S(q⊥, qz) =
∑
n′

exp {−[q⊥d|n− n′| + iqzd(n− n′)]} ·
(31)

The sum over n′ in the above expression can be eval-
uated exactly [45] to give

S(q⊥, qz) =
sinh(q⊥d)

cosh(q⊥d) − cos(qzd)
· (32)

The summation over m and m′ in equation (30) can
also easily be performed with the help of the Graf theorem
for the Bessel functions:

Jν(R) exp(iνψ) =
∞∑

k=−∞
Jk(ρ)Jν+k(r) exp(ikϕ), (33)

where

R =
√
r2 + ρ2 − 2rρ cosϕ, exp(i2ψ) =

r − ρ exp(−iϕ)
r − ρ exp(iϕ)

·
(34)

As a result, we finally arrive at the following equation,
which determines the collective excitations of the system,

1 − 2πe2

κ0q⊥
S(q⊥, qz)

∑
n,n′

J2
n−n′(Z)Πnn′(ω, q⊥) = 0. (35)

Here
Z =

∆

�ωs

∣∣∣sinqzd
2

∣∣∣ (36)

and Πnn′(ω, q⊥) is the irreducible (proper) polariza-
tion function that describes the renormalization of the
Coulomb interaction on account of the dynamic screen-
ing, having the form

Πnn′(ω, q⊥) = (2πa2
B)−1

∑
l,l′

Pln,l′n′(ω)|Fll′ (q⊥aB)|2.

(37)
Note that Πnn′(ω, q⊥) is purely real, and hence all the

collective modes of the system are free of Landau damping.
This is due to the fact that the mean value of the electron
velocity in any direction vanishes in the case of the purely
discrete electron energy spectrum that we consider in this
paper.

Thus, in order to obtain the dispersion relation of col-
lective excitations, we need to solve equation (35). It is
a difficult equation to solve exactly because it contains
infinite sums which, in general, cannot be calculated ana-
lytically. Nevertheless, the analytical solution of the prob-
lem may be obtained explicitly at low electron densities
(ns ∼ 108−109 cm−2), so that the carriers are nondegener-
ate (εF � kBT , where εF is the Fermi energy) even at low
temperatures which are required that the conditions (8)
should be satisfied. In this case, we succeed in recasting
(see the following) the second term of equation (35) into
the more convenient form of a double series, allowing us to
extract the collective-mode dispersion relation from equa-
tion (35) in a rather simple way. A more sophisticated

calculation is needed to obtain analytic closed-form solu-
tions for collective excitations in the case of degenerate
electrons (εF � kBT ), which occurs in n-doped SL sys-
tems. This is the subject of ongoing research, which will
be presented in a separate paper later.

3 Dispersion relations and properties
of collective excitations

In what follows, we restrict our treatment to a nondegen-
erate electron gas. In this case, the electron distribution
function in the presence of an electric field and a magnetic
field has the Boltzmann form

f (0)(εln) = exp
(
ζ − εln

kBT

)
, (38)

with ζ = µ + eEzλ, where µ is the chemical potential
proper and zλ = 〈λ|z|λ〉 represents the mean z-coordinate
of an electron in state |λ〉, which is equal to zn in our
model. Under thermal equilibrium conditions, the magni-
tude ζ is determined by the requirement that the electron
concentration ns per unit area in each layer of the SL
should not change on applying the above-mentioned ex-
ternal fields. It is easy to show that the distribution func-
tion (38) normalized on the total number of electrons in
the system is then given by

f (0)(εl) = 2πa2
Bned [1 − exp(−2α)] exp(−2lα), (39)

where we have introduced the parameter α = �ωc/2kBT
and the “effective” three-dimensional electron density of
the SL ne defined by ne = ns/d.

After some algebraic manipulations, which are out-
lined in Appendix A, we arrive at the final equation, from
which the dispersion relations of the collective excitations
can be derived,

1 −Ω2
p(q⊥, qz)

2
u

exp(−u cothα)
∞∑

N=1

N sinh(Nα)

× IN

( u

sinhα

){
J2

0 (Z)
1

ω2 −N2ω2
c

+ 2
∞∑

M=1

J2
M (Z)

∞∑
N=1

N sinh(Nα)IN
( u

sinhα

)

×
{
J2

0 (Z)
1

ω2 −N2ω2
c

+ 2
∞∑

M=1

J2
M (Z)

× ω2 − (N2ω2
c −M2ω2

s)
[ω2 − (Nωc +Mωs)2][ω2 − (Nωc −Mωs)2]

}
= 0.

(40)

Here
Ω2

p(q⊥, qz) = ω2
pS(q⊥, qz)

q⊥d
2

(41)

is the plasmon dispersion relation obtained by Das Sarma
and Quinn [30] for the SL in the case of zero electric and
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magnetic fields. In the above equation ω2
p corresponds to

the square of the usual plasma frequency for a homo-
geneous three-dimensional electron gas with an effective
electron mass m⊥, that is,

ω2
p =

4πnee
2

κ0m⊥
· (42)

Equation (40) can no longer be simplified. In what
follows, we solve this equation separately for two qualita-
tively distinct cases. In the first case (qz = 0) the elec-
tron densities in all the layers of the SL oscillate in phase,
whereas in the second case (qz �= 0) the density oscillation
phase in the different layers is different. We begin with
the first case which is much easier to investigate than the
second one.

3.1 Collective-mode dispersion relation for qz = 0

For qz = 0 equation (40) takes the form

G(ω) = 1, (43)

where G(ω) stands for

Ω2
p(q⊥, 0)

2
u

exp(−u cothα)
∞∑

N=1

sinh(Nα)

× IN

( u

sinhα

) N

ω2 −N2ω2
c

· (44)

Note that (44) is independent of E. Hence, the qz = 0
modes are insensitive to the electric field strength. The
reason for this is quite evident, since the excitations with
zero wavevector along the SL axis correspond to density
oscillations in the x-y plane. It is not surprising, therefore,
that in this case the collective modes are unaffected by the
electric field which quantizes the motion of the electrons
in the z direction. However, if qz is slightly different from
zero, so that the modes are propagating in a direction
slightly off the SL axis, this is no longer true, and the
frequencies of the modes do depend on E, in the manner
shown further below (Sect. 3.2).

The above expression for G(ω) shows that the terms
in the series in (44) have poles at ω = Nωc. It is easy to
see that in the vicinity of the singular points the function
G(ω) behaves as follows:

G(ω) → −∞ for ω → Nωc − 0,
G(ω) → +∞ for ω → Nωc + 0. (45)

If the function G(ω) is plotted versus ω for various values
of q⊥, then the roots of the dispersion equation (43) are
the intersections of a G vs. ω curves with the horizontal
line G(ω) = 1. Taking into account (45), one may then
state that this equation has an infinite set of real roots

ω = ωN (q⊥), N = 1, 2, . . . , (46)

the Nth root lying in the interval Nωc < ωN(q⊥) <
(N + 1)ωc.

The explicit form of the collective-mode dispersion re-
lation ωN(q⊥) can be obtained when ω is close to the
above-mentioned poles in the series in (44), that is, if the
inequality |ω −Nωc| � Nωc is satisfied. In this case, we
retain only the “resonant” term in the series and obtain

ω2
N (q⊥) = N2ω2

c [1 + ξN (q⊥)], (47)

where

ξN (q⊥) =
Ω2

p(q⊥, 0)
Nω2

c

2
u

exp(−u cothα)

× sinh(Nα)IN
( u

sinhα

)
· (48)

The general result for the collective-mode dispersion in
equation (48) can be further simplified when q⊥aB , q⊥d�
1 (the long-wavelength limit) and when q⊥aB, q⊥d � 1
(the short-wavelength limit). In the long-wavelength limit,
the structure factor S(q⊥, qz) defined by equation (32) as-
sumes the form S(q⊥, 0) � 2/q⊥d for qz = 0. In the same
limit, the argument of the Bessel function in equation (48)
is much smaller than unity, and hence the power series ex-
pansion of IN (z) can be successfully used here. Retaining
only the leading order term in the expansion yields

IN (z) � 1
N !

(z
2

)N

· (49)

Substituting equation (49) into equation (48) and taking
into account that cothα � 1 for α� 1, we obtain

ξN (q⊥) � ω2
p

ω2
c

uN−1

N2(N − 1)!
· (50)

In the short-wavelength limit, the structure factor
S(q⊥, qz) � 1 independently on the values of the param-
eter qz . With the use of the following well-known asymp-
totic expansion of the Bessel function IN (z) for a large
argument (i.e., in the given case, for u/sinhα� 1),

IN (z) � ez

√
2πz

, (51)

we have

ξN (q⊥) � ω2
p

Nω2
c

q⊥d

4
√
πu3

exp (−u) exp
[
α

(
N +

1
2

)]
.

(52)
Going back to the long-wavelength limit of the dis-

persion relation (47), it is worth noticing that in this
limit the obtained solution for N = 1 corresponds to the
principle magnetoplasmon mode which occurs at the so-
called upper-hybrid plasma frequency ω1(q⊥) connected
with both the cyclotron frequency ωc and the plasma
frequency ωp. The expression for ω1(q⊥) given by equa-
tion (47), taken jointly with equation (50), is

ω1(q⊥) =
(
ω2

p + ω2
c

)1/2
[1 + ξ1(q⊥)], (53)

where

ξ1(q⊥) =
ω2

p

24(ω2
p + ω2

c)
q2⊥

(
d2 +

6ω2
p

ω2
p − 3ω2

c

a2
B

)
. (54)
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Fig. 1. Plot of ωN/ωc given by equation (47) as a function of
q⊥d at the liquid-helium temperature for the case ωp ∼ ωc. The
SL parameters used to generate this figure are given in the text.
Only the principle magnetoplasmon mode branch (ω1) and the
two lowest Bernstein-like mode branches (ω2,3) are shown.

It follows from equation (53) that the frequency ω1(q⊥)
is very close to the cyclotron frequency ωc for the case of
low electron density when ωp � ωc. On the other hand,
the solution (47) for N = 2, 3, . . . corresponds to the
Bernstein-like modes associated with the charge density
oscillations occurring at the higher multiples of the cy-
clotron frequency. In the limiting case of q⊥ → ∞ all the
frequencies ωN approach Nωc whatever the electron den-
sity might be.

In Figure 1, the dispersion relation results of equa-
tion (47) are presented for the case, ωp ∼ ωc. Only the
principal magnetoplasmon mode (ω1) and the two lowest
Bernstein-like modes (ω2,3) are shown in this plot. In the
numerical calculations, we employ the usual parameters
for a GaAs-based SL [47]: the electron effective masses
m⊥ = 1.25m‖ and m‖ = 0.079m0 (m0 is the free-electron
mass), the dielectric constant κ0 = 12.5, and the SL pe-
riod d = 10 nm. The plot of the three modes in Figure 1
shows that the lowest branch exhibits an appreciable vari-
ation with q⊥d in the region q⊥d ≤ 1, whereas the higher
branches reveal but very weak dispersion. On the other
hand, when ωp � ωc we observe (the plot is not shown)
no dispersion for all the modes pictured in Figure 1, as
expected from the above discussion.

3.2 Collective-mode dispersion relations for qz �= 0

We now consider the spectrum of collective modes with
non-zero wavevector along the SL growth axis, i.e. with
qz �= 0. In this case a SL system supports two kinds of col-
lective excitations which are described by the dispersion
equation (40). The first of them corresponds to the elec-
tron density oscillating at or near the cyclotron frequency
and its higher multiples. Actually, they are the usual elec-
tronic cyclotron (or Bernstein) modes except that now
their dispersion is affected by the electric field. Another
type of excitations involved in equation (40) is a new kind

of collective modes, which we call cyclotron-Stark modes
in this paper, and which arise only upon application of
electric and magnetic fields parallel to the SL axis. These
extra collective modes are related to the electron transi-
tions between different Wannier-Stark-Landau ladder lev-
els in such a system. The possibility of their existence is
evident from equation (40) where the terms in the double
series have the “resonant” energy denominator of the type
(ω − ω±

NM )−1 with ω±
NM = Nωc ±Mωs.

We first examine the cyclotron modes with frequen-
cies close to Nωc. There are two cases to consider, de-
pending on the ratio between the two frequencies ωc/ωs:
rational (ωc and ωs are commensurate) and irrational (ωc

and ωs are incommensurate). We look at the second case
first. Since we are concerned only with the frequency range
near Nωc, the second term in the curly brackets of equa-
tion (40) can be neglected. The reason for this is that
the double series in equation (40) contains no “resonant”
terms of the type (ω − Nωc)−1 for any values of N and
M . Under a certain condition (see below), the neglect
of the above-mentioned term is justified for the ratio-
nal ωc/ωs as well, in spite of the fact that in this case
among the indices N and M in equation (40) such N0

and M0 that N0ωc ±M0ωs = Nωc for certain N should
necessarily be found. Then, the double series in equa-
tion (40) will contain the particular term proportional to
(ω − Nωc)−1, which will give the major contribution to
the sum if |ω − Nωc| � Nωc. Nevertheless, provided the
inequality |qz |d � π is satisfied, the terms in the dou-
ble series of equation (40) which are proportional to the
Bessel function JM (Z) with M ≥ 1 can be neglected, since
they lead to but a small correction to the dispersion of
the modes obtained further below. Indeed, under actual
experimental circumstances, the parameter ∆/�ωs is not
too large (∼ 3 − 5), so that only a comparatively small
number of Wannier-Stark levels can be arranged on the
width of the ground miniband. In this case the argument
of the Bessel function JM (Z) will be small compared to
unity, if we confine our consideration to the region of small
qz (in the sense that |qz | � π/d). Since the Bessel func-
tion JM (Z) falls off rapidly for Z � 1, the second term in
the curly brackets of equation (40) is small compared to
the first one, so that we have to retain only the latter. In
keeping only the “resonant” term therein, we finally arrive
at the following dispersion relation:

ω2
N(q⊥, qz) = N2ω2

c [1 +DN (q⊥, qz)], N = 1, 2, . . . ,
(55)

where the dispersion coefficient DN (q⊥, qz) is given by

DN (q⊥, qz) =
Ω2

p(q⊥, qz)
Nω2

c

2
u

exp(−u cothα) sinh (Nα)

× IN

( u

sinhα

)
J2

0

(
∆

�ωs

∣∣∣sinqzd
2

∣∣∣) . (56)

It is clear from the discussion above that equation (55)
is valid for all qz if the frequencies ωc and ωs are incom-
mensurate and for small qz (|qz | � π/d) if they are com-
mensurate.
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The asymptotic behavior of the dispersion coefficient
in equation (55) can readily be obtained by appropri-
ate expansion of the Bessel function IN (z). Using equa-
tions (49) and (51), we get after simple algebra

DN (q⊥, qz) =
uN−1

2N2(N − 1)!
ω2

p

ω2
c

(q⊥d)2

1 − cosqzd

× J2
0

(
∆

�ωs

∣∣∣sinqzd
2

∣∣∣) · (57)

in the long-wavelength limit (q⊥aB, q⊥d� 1) and

DN (q⊥, qz) =
ω2

p

Nω2
c

q⊥d

4
√
πu3

exp (−u) exp
[
α

(
N +

1
2

)]

× J2
0

(
∆

�ωs

∣∣∣sinqzd
2

∣∣∣) . (58)

in the short-wavelength limit (q⊥aB, q⊥d� 1).
It follows from equation (55) that in varying qz within

the first Brillouin minizone of the SL (−π/d ≤ qz ≤ π/d),
the collective excitations with q⊥ fixed will evolve in
frequency to form continuous spectral bands which are
symmetric with respect to qz in virtue of the equal-
ity ωN (q⊥,−qz) = ωN(q⊥, qz). The broadening of the
frequencies ωN (q⊥, qz) into continua arises from the qz-
dependence of Ω2

p(q⊥, qz) and J2
0 (Z) in equation (56).

It is easy to see that, since tanh(qzd/2) ≤ S(q⊥, qz) ≤
coth(qzd/2) and J2

0 (Z) ≤ 1, the lower bound of the Nth
band labeled ω−

N and the upper bound of the same band
labeled ω+

N correspond to out-of-phase (qz = ±π/d) and
in-phase (qz = 0) charge density oscillations in adjacent
layers of the SL, respectively. This is illustrated in Fig-
ure 2 where the dimensionless frequencies ωN/ωc of the
first two cyclotron modes (N = 1, 2) are plotted against
q⊥d for the case corresponding to that presented above in
Figure 1. The parameters used in the calculation are the
same as in Figure 1, except that now qz is varying from
zero out to the effective Brillouin zone edge π/d. Our cal-
culation shows that for small q⊥d, the width of the lower
band is at a maximum, whereas for large q⊥d, it becomes
extremely small. For the higher bands originating from
Bernstein-like modes, the maximum of the bandwidth oc-
curs for a larger value of q⊥d. However, it should be noted
that on the whole the bandwidths are very small, particu-
larly for electron densities corresponding to the most real-
istic experimental situation where the plasmon frequency
is much smaller than the cyclotron one. In consequence,
as seen from Figure 2, there is a gap between the first
and the second bands for all the q⊥d values considered.
It can be shown that the gaps in the spectrum of collec-
tive modes occur between any adjacent bands arising from
higher cyclotron mode branches with N = 3, 4, . . .

The general result (55) for the dispersion relation
shows that the frequency of the cyclotron modes with
nonzero qz exhibit oscillatory variations as a function of
electric field strength, which are due to oscillatory behav-
ior of the Bessel function in equation (56). The physi-
cal origin of these oscillations is evident. They can be
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Fig. 2. Plot of ωN/ωc given by equation (55) as a function of
q⊥d for the same case as in Figure 1. The parameters are the
same as those used to generate Figure 1, except that qz varies
here from 0 to π/d. The figure shows the two lowest collective-
mode bands (the shaded areas) corresponding to the principle
magnetoplasmon mode (N = 1) and the first Bernstein-like
mode (N = 2).
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Fig. 3. A three-dimensional plot of the cyclotron mode ωN

(N = 4) given by equation (55) as a function of E and
q⊥d. The parameters used in the calculation are ns = 4.5 ×
108 cm−2, T = 4.2 K, B = 5T and qz = 0.7×106 cm−1. Others
are the same as in Figure 1. The figure demonstrates the oscil-
latory behavior of the frequencies of the cyclotron modes as a
function of electric field strength as well as their non-monotonic
dependence on q⊥d at a fixed value of E.

attributed to the geometrical resonance between the wave-
length λ0 of the collective mode with qz = 2π/λ0 and the
amplitude A0 = ∆/2eE of a Bloch oscillation of an elec-
tron undergoing Bragg diffraction on a periodic potential
in the presence of an intense electric field. In Figure 3
we display the dispersion of ωN for N = 4 as a function
of electric field E, obtained with equations (55, 56) for a
fixed value of qz which we have chosen so that the condi-
tion of the validity of equation (55) should still be satis-
fied. The first oscillation of the considered cyclotron mode
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frequency ω4 is clearly seen in the region where q⊥d ∼ 1.
Our calculations also show that the oscillations are shifted
towards larger values of q⊥d as N increases. On the other
hand, the oscillations fail to manifest themselves both for
q⊥d � 1 and q⊥d � 1, since the amplitude of the oscil-
lating term in equation (55) falls off rapidly in these two
regions. However, it should be noted that even in the re-
gion q⊥d ∼ 1 the relative change of the cyclotron mode
frequency is very small (∼ 108 s−1). Hence, it will at least
be extremely hard, if not impossible to measure these os-
cillations, particularly if one takes into account that in
real systems there always exist collision effects which will
lead to damping of the modes at finite q.

We now turn our attention to the study of another type
of collective modes which we call cyclotron-Stark modes.
We assume that Nωc �= Mωs, since the case Nωc = Mωs

is apparently reduced to the one that we considered above.
To obtain an analytical expression for the frequencies of
the modes, we use equation (40) in the near vicinity of
ω±

NM , or more specifically |ω − ω±
NM | � ω±

NM . In this
case, we can neglect the first term in the curly brackets
of equation (40), whereas in the second term we have to
keep only the “resonant” one. We then get

[ω±
NM (q⊥, qz)]2 = (ω±

NM )2[1 +D±
NM (q⊥, qz)] (59)

(N,M = 1, 2, . . . ), where the dispersion coefficient
D±

NM (q⊥, qz) is given as

D±
NM (q⊥, qz) =

Ω2
p(q⊥, qz)

ω±
NMωc

2
u

exp(−u cothα) sinh(Nα)

× IN

( u

sinhα

)
J2

M

(
∆

�ωs

∣∣∣ sin qzd
2

∣∣∣) .
(60)

The dispersion relation (59) is the main result of this
paper. All collective excitations of the system are con-
tained in equation (59) if we considered it to be valid for
cases M = 0 and qz = 0. Indeed, for the M = 0 case
the above equation is formally identical to equation (55)
which describes the spectrum of the cyclotron modes prop-
agating in “oblique” direction (qz �= 0) with respect to
the SL axis, whereas for the M = 0, qz = 0 case equa-
tion (59) reduces to equation (47) which defines the spec-
trum of the collective modes propagating perpendicular
to the SL axis. Thus, equation (65) can serve as the ba-
sic dispersion relation for the collective excitations of the
system under consideration. We therefore write down the
asymptotic expansions for D±

NM (q⊥, qz) which are valid in
the following two limiting cases. For small q⊥ (such that
q⊥aB, q⊥d� 1), equation (60) gives

D±
NM (q⊥, qz) =

uN−1

2N !

{
δ(qz , 0)δ(M, 0)

2ω2
p

Nω2
c

+ [1 − δ(qz , 0)]
ω2

p

ω±
NMωc

(q⊥d)2

1 − cos qzd
J2

M

(
∆

�ωs

∣∣∣sinqzd
2

∣∣∣)}·
(61)
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Fig. 4. A three-dimensional plot of the lowest (N = 1, M = 1)
cyclotron-Stark mode ω+

NM given by equation (59) as a func-
tion of q⊥d and qzd for the ratio between the frequencies
ωs/ωc = π. Other parameters are the same as in Figure 3.

In the opposite limit where q⊥aB, q⊥d� 1, we have

D±
NM (q⊥, qz) =

q⊥d

4
√
πu3

exp (−u) exp
[
α

(
N +

1
2

)]

×
{
δ(qz, 0)δ(M, 0)

ω2
p

Nω2
c

+ [1 − δ(qz , 0)]
ω2

p

ω±
NMωc

J2
M

(
∆

�ωs

∣∣∣sinqzd
2

∣∣∣)}· (62)

Here, as before, δ(a, b) denotes Kronecker’s delta.
Figure 4 shows the dispersion of the lowest (N = 1,

M = 1) collective mode ω+
NM calculated from equa-

tion (59) for the same SL parameters as in Figure 1. Since
we examine an irrational case when the frequencies ωc and
ωs are incommensurate, we have chosen (rather arbitrary)
the ratio between the frequencies ωc/ωs to be equal to π.
The dispersion relations of the modes labeled ω−

NM (q⊥, qz)
in equation (59) are graphed in Figure 5 for the same
values of N and M as in Figure 4 and also for the case
N = 4,M = 1. The examples presented in the above fig-
ures are typical of dispersion of the cyclotron-Stark modes
predicted in this paper, and therefore they illustrate the
specific features of dispersion of higher collective modes of
this type as well.

It follows from equation (59) that at fixed values of q⊥
and qz the frequencies of the cyclotron-Stark modes have
an oscillatory dependence on the electric field strength.
The origin of this effect is the same as discussed above
for the cyclotron modes ωN(q⊥, qz). In addition, equa-
tion (59) shows that the frequencies ω±

NM (q⊥, qz), with
q⊥ fixed, oscillate with changing qz. In Figures 4 and 5 at
least one oscillation of this kind can be observed in the re-
gion q⊥d ∼ 1. These oscillations are due to the oscillatory
variation of the Bessel function JM (Z) in equation (60) as
qz changes. Inspection of Figures 4 and 5 shows that the
principle extreme points of both functions ω+

NM (q⊥, qz)
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Fig. 5. A three-dimensional plot of ω−
NM given by equa-

tion (59) as a function of q⊥d and qzd for the same values
of (N, M) as in Figure 4 (panel (a)) and for N = 4, M = 1
(panel (b)). Parameters are the same as in Figure 4. The fig-
ure demonstrates the different nature of the dispersion of the
Stark-cyclotron mode branches ω−

NM , with qz fixed, in the re-
gions q⊥d � 1 and q⊥d � 1, depending on the values of N
and M .

and ω−
NM (q⊥, qz) are situated at qzd � 1, q⊥d ∼ 1. As

a general trend we find from the numerical calculations
that with an increase in qz the extreme points are shifted
towards larger values of the parameter q⊥d. In this region
the amplitude of the oscillations of ω±

NM (q⊥, qz) becomes
extremely small. That is why the second and the following
oscillations of the frequencies ω±

NM (q⊥, qz) are not seen in
Figures 4 and 5.

One should notice an interesting feature of the ob-
tained spectra of the cyclotron-Stark modes. In Figures 4
and 5, we can clearly observe the non-monotonic depen-
dence of the frequencies ω±

NM (q⊥, qz) on the parameter
q⊥d in the region qzd � 1. Such behavior of ω±

NM (q⊥, qz)
is due to the fact that the different factors depending on
q⊥ in equation (60) change differently as q⊥d increases.

A general feature of the curves in Figure 4 is that as
q⊥d varies from 0 to 5 the frequencies ω+

NM (q⊥, qz), with
qz fixed, first increase starting from ω+

NM (0, qz), reach a
maximum, and then decrease approaching ω+

NM (0, qz) in
the short-wavelength limit. In other words, all the mode
branches ω+

NM (q⊥, qz) are characterized by normal dis-
persion for small q⊥ (q⊥d � 1) and by anomalous dis-
persion in the opposite limit of large q⊥ (q⊥d � 1). In
contrast, the dispersion of the branches ω−

NM (q⊥, qz) in
the above limiting cases can be normal as in Figure 5b
or anomalous as in Figures 5a depending on the values
of N and M . This is due to the fact that the sign of
the dispersion coefficient D−

NM (q⊥, qz) can be either pos-
itive or negative depending on the sign of the frequency
ω−

NM = Nωc −Mωs in the denominator of equation (60).
For the ratio of the frequencies ωc/ωs = π, which have
been chosen for the numerical calculations, the positive
sign occurs for the N = 4,M = 1 case, whereas the nega-
tive sign occurs for the N = 1, M = 1 case. This explains
the change in the nature of dispersion for the cyclotron-
Stark mode branches ω−

NM (q⊥, qz) in Figure 5b as com-
pared to those in Figures 5a.

4 Summary and concluding remarks

In this paper, we have studied in detail the collective elec-
tronic excitations in a semiconductor SL with electric and
magnetic fields parallel to the SL axis. Such an orientation
of the fields is particularly interesting because in this case
the electron energy spectrum is purely discrete, consisting
of the Landau and Wannier-Stark ladder levels.

We have used the equation-of-motion method to de-
rive the dispersion relations of the collective excitations
at relatively low electron concentration where the elec-
tron plasma can be treated as a nondegenerate electron
gas in the RPA. This is of relevance for the electron gas
in undoped SLs of the GaAs/AlxGa1−xAs type.

We predict that the spectrum of the collective modes
propagating perpendicular to the SL axis consists of a
principle magnetoplasmon mode (at a frequency very close
to the cyclotron frequency ωc) and an infinite set of
Bernstein-like modes associated with the higher multiples
of ωc. All these modes are practically dispersionless and
are not affected by Wannier-Stark quantization.

The spectrum of the collective excitations propagat-
ing in “oblique” direction with respect to the SL axis is
more complicated. In this case, in addition to the cyclotron
modes with frequencies close to Nωc, we predict a com-
pletely new kind of collective modes at hybrid frequencies
|Nωc±Mωs|, with N,M arbitrary integers, which we call
cyclotron-Stark modes. In the case of non-zero wavevec-
tor component along the SL axis, the frequencies of these
modes exhibit an oscillatory dependence on the electric
field strength. We infer from our calculations that the am-
plitude of the oscillations is on the order of 108 s−1. This
suggests that the oscillations are probably not so simple
to observe, since in SLs the collision linewidths are usually
much bigger.
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Π±
nn′(ω, q⊥) =

ned

�
[1 − exp(−2α)] exp(−u)

{ ∞∑
N=0

uNe−2αN

±(n′ − n)ωs ∓ ω + Nωc

∞∑
l′=0

l′!
(l′ + N)!

exp(−2l′α)[LN
l′ (u)]2

+
∞∑

N=1

uN

±(n′ − n)ωs ∓ ω − Nωc

∞∑
l=0

l!

(l + N)!
exp(−2lα)[LN

l (u)]2
}

, (A.4)

Another interesting feature of the collective modes
considered in this paper is that they are free of
Landau damping. As mentioned above, this is caused
by the full discreteness of the electron energy spectrum.
Without Landau damping the collective modes decay due
to the electron scattering processes on phonons and dif-
ferent lattice imperfections. If such collision effects are in-
cluded, then there appears a small imaginary part of the
polarization function Πnn′(ω, q⊥), which determines the
response of the system to an external AC electric field.
Therefore the specific predictions made in this paper for
the collective excitations should be observable in Raman
light scattering experiments. To enhance the sensitivity of
the method, such a scattering is usually observed in the
resonant regime where the frequency of the incident light
beam (ωL) is close to the fundamental absorption edge of
SLs [26–48]. In the case under consideration the scattered-
radiation spectrum should exhibits peaks at the frequen-
cies ωL ± ω±

NM , ωL ± 2ω±
NM and the like, the width of

the peaks being determined by the collective mode damp-
ing 1/τ. It should be noted that in the case when cy-
clotron ωc and Wannier-Stark ωs frequencies are incom-
mensurate, the hybrid frequency ω±

NM is defined by two
“quantum” numbers N and M simultaneously, and hence
at large values of N and M the sequence of lines corre-
sponding to the cyclotron-Stark collective modes in the
scattered-radiation spectrum can seem to be chaotic. The
experimental observation of such a kind of chaos in Ra-
man scattering spectra in SLs should present a significant
interest from the standpoint of general physics.

The authors are grateful to Professor P. Voisin of École Nor-
male Supérieure (Paris) for having sent the reprints of his pa-
per [4–6] on Wannier-Stark quantization. They would also like
to thank the referees for their competent scrutiny of the ini-
tial version of this article, their constructive remarks, and for
providing additional useful references.

Appendix A

Substituting equation (24) into equation (37), the expres-
sion for Πnn′(ω, q⊥) can be written in the following con-
venient form:

Πnn′(ω, q⊥) = Π+
nn′(ω, q⊥) +Π−

nn′(ω, q⊥), (A.1)

where Π±
nn′(ω, q⊥) is given by

Π±
nn′(ω, q⊥) =

1
2πa2

B�

∞∑
l=0

∞∑
l′=0

|Fll′(q⊥aB)|2f (0)(εl)

× [(l − l′)ωc ± (n′ − n)ωs ∓ ω]−1.
(A.2)

To evaluate Πnn′(ω, q⊥), we recast the sums of the
type given in equation (A.2) as follows:

∞∑
l=0

∞∑
l′=0

All′ =
∞∑
l=0

(
l∑

l′=0

All′ +
∞∑

l′=l+1

All′

)

=
∞∑

l=l′

∞∑
l′=0

All′ +
∞∑

l′=l+1

∞∑
l=0

All′ . (A.3)

We now transform the last line of equation (A.3) by
changing the summation indices; for the first term where
l ≥ l′ we change l → l−l′, while for the second term where
l < l′ we change l′ → l′− l. With the aid of equations (26)
and (39) of the main text, we then get

see equation (A.4) above,
where u = q2⊥a

2
B/2 and N = |l− l′|.

The series summations over l and l′ in equation (A.4)
can easily be performed by using the bilinear generating
function for the associated Laguerre polynomials

(1 − z)−1exp
(
−2u

z

1 − z

)
u−pz−p/2Ip

(
2u

z

1 − z

)
=

∞∑
l=0

l!
Γ (l + p+ 1)

zl[Lp
l (u)]2, (A.5)

where Γ (x) is the gamma-function and Ip(z) is a modi-
fied Bessel function of the first kind and of order p. The
above equation represents the well-known Hille-Hardy for-
mula [46] which is valid for p > −1 and all |z| < 1. Setting
z = exp(−2α) in equation (A.5) and taking into account
that I−p(z) = Ip(z) for integer p, we easily get from equa-
tion (A.4) that

Πnn′(ω, q⊥) =
2ned

�
exp(−u cothα)

×
∞∑

N=−∞

sinh(Nα)
ω −Nωc − (n′ − n)ωs

IN

( u

sinhα

)
· (A.6)

Further, we substitute equation (A.6) into equation (35)
and change the variable of the summation n′ to M =
n′−n. After performing the summation over n in (35) we
get equation (40) of the main text.
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